NAG Toolbox for MATLAB

f07vg

1 Purpose

f07vg estimates the condition number of a real triangular band matrix.

2 Syntax

3 Description

f07vg estimates the condition number of a real triangular band matrix A, in either the 1-norm or the ∞ -norm:

$$\kappa_1(A) = \|A\|_1 \|A^{-1}\|_1 \quad \text{or} \quad \kappa_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}.$$

Note that
$$\kappa_{\infty}(A) = \kappa_1(A^{\mathrm{T}})$$
.

Because the condition number is infinite if A is singular, the function actually returns an estimate of the **reciprocal** of the condition number.

The function computes $\|A\|_1$ or $\|A\|_\infty$ exactly, and uses Higham's implementation of Hager's method (see Higham 1988) to estimate $\|A^{-1}\|_1$ or $\|A^{-1}\|_\infty$.

4 References

Higham N J 1988 FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation *ACM Trans. Math. Software* **14** 381–396

5 Parameters

5.1 Compulsory Input Parameters

1: norm p - string

Indicates whether $\kappa_1(A)$ or $\kappa_{\infty}(A)$ is estimated.

norm
$$\mathbf{p} = '1'$$
 or 'O'

$$\kappa_1(A)$$
 is estimated.

norm
$$p = 'I'$$

$$\kappa_{\infty}(A)$$
 is estimated.

Constraint: norm p = '1', 'O' or 'I'.

2: **uplo – string**

Indicates whether A is upper or lower triangular.

$$uplo = 'U'$$

A is upper triangular.

$$uplo = 'L'$$

A is lower triangular.

Constraint: **uplo** = 'U' or 'L'.

[NP3663/21] f07vg.1

f07vg NAG Toolbox Manual

3: diag – string

Indicates whether A is a nonunit or unit triangular matrix.

$$diag = 'N'$$

A is a nonunit triangular matrix.

$$diag = 'U'$$

A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be

Constraint: diag = 'N' or 'U'.

4: kd – int32 scalar

 k_d , the number of superdiagonals of the matrix A if **uplo** = 'U', or the number of subdiagonals if **uplo** = 'L'.

Constraint: $\mathbf{kd} \geq 0$.

5: ab(ldab,*) - double array

The first dimension of the array **ab** must be at least $\mathbf{kd} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n triangular band matrix A.

The matrix is stored in rows 1 to $k_d + 1$, more precisely,

if **uplo** = 'U', the elements of the upper triangle of A within the band must be stored with element A_{ii} in $\mathbf{ab}(k_d+1+i-j,j)$ for $\max(1j-k_d) \le i \le j$;

if **uplo** = 'L', the elements of the lower triangle of A within the band must be stored with element A_{ii} in $\mathbf{ab}(1+i-j,j)$ for $j \le i \le \min(nj+k_d)$.

If diag = 'U', the diagonal elements of A are assumed to be 1, and are not referenced.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array ab.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, work, iwork

5.4 Output Parameters

1: rcond – double scalar

An estimate of the reciprocal of the condition number of A. **rcond** is set to zero if exact singularity is detected or the estimate underflows. If **rcond** is less than **machine precision**, A is singular to working precision.

2: info - int32 scalar

info = 0 unless the function detects an error (see Section 6).

f07vg.2 [NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: norm_p, 2: uplo, 3: diag, 4: n, 5: kd, 6: ab, 7: ldab, 8: rcond, 9: work, 10: iwork, 11: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed estimate **rcond** is never less than the true value ρ , and in practice is nearly always less than 10ρ , although examples can be constructed where **rcond** is much larger.

8 Further Comments

A call to f07vg involves solving a number of systems of linear equations of the form Ax = b or $A^{T}x = b$; the number is usually 4 or 5 and never more than 11. Each solution involves approximately 2nk floating-point operations (assuming $n \gg k$) but takes considerably longer than a call to f07ve with one right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogue of this function is f07vu.

9 Example

[NP3663/21] f07vg.3 (last)